
catalog

catalog ii

COLLABORATORS

TITLE :

catalog

ACTION NAME DATE SIGNATURE

WRITTEN BY October 9, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

catalog iii

Contents

1 catalog 1

1.1 catalog.doc . 1

1.2 catalog.m/--overview-- . 1

1.3 catalog.m/def . 2

1.4 catalog.m/end . 3

1.5 catalog.m/get . 3

1.6 catalog.m/open . 3

catalog 1 / 4

Chapter 1

catalog

1.1 catalog.doc

--overview--

def()

end()

get()

open()

1.2 catalog.m/--overview--

PURPOSE
To act as the base class for localized ID/string pairs.

OVERVIEW
The locale library contains a mechanism for isolating textual
strings in program code (such as "OK", "Please select file" and
other strings for the benefit of the user) and allowing for them
to be changed externally from the program, while still holding
’default’ copies of the strings in the program core. This creates
the opportunity to have ’localized’ strings.

The default mechanism for this is with two ’catalog’ files, Bla.cd
and Bla.ct, where the .cd file is the catalog of ’descriptors’ and
the .ct file is a catalog of translations for a specific language.

The .cd file contains your original text strings, and an uppercase
identifier for each of them. Example:

MSG_OPEN_FILE (//)
Open file...

The identifier is translated into a numerical ID, and using the

catalog 2 / 4

’const’ / ’define’ feature of most programming languages, the ID
name is associated with that unique numerical value.

When you wish to use a string in your program, you would get it
from a function taking the ID and returning the string.

filereq(’Open file...’)
BECOMES
filereq(get(MSG_OPEN_FILE))

What the catalog_obj does is represent the catalog as an object,
thereby allowing you easy use of multiple catalogs, and using even
single catalogs very easily. The general mechanism for actually
using catalogs is to subclass the bare catalog object and set up
default preset values - catalog name, builtin strings, language of
builtin strings, and possibly version.

EXAMPLE
See the included example files showing a localised ’helloworld’.

A FlexCat ’.sd’ file, included and used by the example, can be
used for automatic generation of compiled catalog modules from .cd
files.

1.3 catalog.m/def

NAME
catalog_obj.def() -- Set up the default strings block.

SYNOPSIS
def(block:PTR TO LONG)

FUNCTION
Set the catalog’s block of default strings. This is best kept as a
static list with constants and static strings in it - the catalog
neither copies the strings nor the block into its own memory, it
uses the block and strings direct from whatever you pass it.

INPUTS
block - a list containing ID/string pairs, see the example below.

EXAMPLE
CONST MSG_HELLO=100, MSG_BYE=101
catalog.def([

MSG_HELLO, ’Hello’,
MSG_BYE’, ’Bye’

])

NOTE
The block _must_ be terminated with a long containing NIL. Amiga E
does this automatically when you use the list operator, but not
when you use the builtin-assembler ’LONG’ directive, or magic a
list up yourself.

In other words, just use this as shown and you’ll be fine.

catalog 3 / 4

SEE ALSO

get()

1.4 catalog.m/end

NAME
catalog_obj.end() -- Destructor.

SYNOPSIS
end()

FUNCTION
Frees resources used by an instance of the catalog_obj class.

1.5 catalog.m/get

NAME
catalog_obj.get() -- Get a localized message string.

SYNOPSIS
string := get(id)

FUNCTION
Attempts to retrieve a string from the opened catalog with the
requested ID value. If not in the catalog, it will look for it in
the block of default strings. If not there either, it will return
NIL.

INPUTS
id - the ID value associated with the required string.

RESULT
string - the requested string, possibly translated, or NIL if

there is no such string available.

1.6 catalog.m/open

NAME
catalog_obj.open() -- Constructor.

SYNOPSIS
open(catalog, language, locale:PTR TO locale)

FUNCTION
Creates an instance of the catalog class. Opens the locale library
and appropriate translations of the catalog as neccesary.

catalog 4 / 4

As no minimum level of allocations are necessary to operate
correctly, this constructor throws no exceptions.

Apart from calling this constructor, you should also call
def()
to

set up default strings before starting to call
get()
.

INPUTS
catalog - The name of the catalog containing your strings, for

example ’helloworld.catalog’. Must not be NIL.

language - A string representing the name of the language of the
default strings you supply - for example, ’français’ or
’deutsch’. If the language of the defaults strings is
’english’, you can pass NIL instead.

locale - If you are using a particular locale structure from
OpenLocale(), you may pass this in to affect the
opening and parsing of the catalog. If you just want to
use the default locale (user’s preference) then simply
pass NIL.

SEE ALSO
locale.library/OpenCatalog(),

def()

	catalog
	catalog.doc
	catalog.m/--overview--
	catalog.m/def
	catalog.m/end
	catalog.m/get
	catalog.m/open

